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Rapid detection of neurons in widefield 
calcium imaging datasets after training with 
synthetic data
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Jiamin Wu    1,2,3,4,5, Ziwei Li5,6, Xinyang Li    1,2,3,4, Guihua Xiao1,2,3,4, Hao Xie1,2,3,4, 
Lu Fang    7  & Qionghai Dai    1,2,3,4 

Widefield microscopy can provide optical access to multi-millimeter fields 
of view and thousands of neurons in mammalian brains at video rate. 
However, tissue scattering and background contamination results in signal 
deterioration, making the extraction of neuronal activity challenging, 
laborious and time consuming. Here we present our deep-learning-based 
widefield neuron finder (DeepWonder), which is trained by simulated 
functional recordings and effectively works on experimental data to achieve 
high-fidelity neuronal extraction. Equipped with systematic background 
contribution priors, DeepWonder conducts neuronal inference with an 
order-of-magnitude-faster speed and improved accuracy compared with 
alternative approaches. DeepWonder removes background contaminations 
and is computationally efficient. Specifically, DeepWonder accomplishes 
50-fold signal-to-background ratio enhancement when processing 
terabytes-scale cortex-wide functional recordings, with over 14,000 
neurons extracted in 17 h.

Optical microscopy technologies1–3 and genetically encoded calcium 
indicators4 help researchers study brain function in various behavioral 
tasks5,6. During image acquisition within the scattering brain, research-
ers have to contend with fundamental limitations imposed by serial 
and parallel acquisition schemes7. Serial acquisition approaches such 
as two-photon laser-scanning microscopy (TPLSM) provide optical 
sectioning and robustness to scattering8, but have low temporal reso-
lution across millimeter-scale field-of-view (FOV)9,10. Although multi-
plexing methods substantially increase the TPLSM frame rate across 
large cortical areas, the necessary high power dosage in the animal 
brain11 could result in heat-induced damage12. With regard to the spatial 
scale, TPLSM has been pushed to a FOV of ~5 mm in diameter9,10,13–16, 
but this typically requires temporal subsampling of calcium dynamics 

for a cortex-wide region-of-interest (ROI). On the other hand, parallel 
schemes such as widefield microscopy7,17,18, combined with the growing 
gamut of array sensors, provide neuroscientists with a practical tool 
capable of video-rate acquisition over multi-millimeter-scaled ROIs at 
single-cell resolution19. With the help of an optimized optical setup and 
computational tools, widefield microscopy has enabled recordings of 
large neuron populations across tens of mammalian brain regions in a 
10 × 8 mm2 FOV at a pixel size of 0.8 µm (ref. 20), with potential to record 
millions of neurons simultaneously17. However, scattering-induced 
crosstalk and background contaminations challenge widefield func-
tional microscopy. Since the widefield microscope illuminates and 
detects the whole volume of the sample, neurons away from the focal 
plane contribute ambiguous background signals21. Light scattering 
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converts background-contaminated recordings into background-free 
ones (Fig. 1a). We synthesized hyperrealistic widefield calcium imag-
ing data by modeling vessels, neurons and background dendrites and 
axons with a specific widefield microscope model33, yielding synthetic 
recordings with hyperrealistic pixel distribution, ΔF/F distribution 
and spatial frequency distribution (Supplementary Figs. 1 and 2). As a 
counterpart, background-free recordings were synthesized by mod-
eling only fluorescent neurons and nonfluorescent vessels in the tissue 
along with the same microscope model. Paired synthetic recordings 
were thus generated and fed to our removing background network 
(RB-Net; Extended Data Fig. 1a and Supplementary Fig. 3), to learn the 
mapping between background-contaminated experimental data and 
background-free synthetic data. The trained RB-Net in DeepWonder 
outputs high-contrast images and realistic neuronal activity without 
contamination (Fig. 1c and Supplementary Fig. 4). Compared with raw 
data, DeepWonder significantly enhanced correlation scores with the 
ground truth signals (Fig. 1d, n = 901 neurons, ***P < 1 × 10−50, two-sided 
Wilcoxon signed-rank test) and signal-to-background ratios (SBRs) in 
test datasets that have never been seen by the network (Fig. 1e, n = 901 
neurons, ***P < 1 × 10−50, two-sided Wilcoxon signed-rank test). Com-
pared with other state-of-the-art background removal methods25,26, 
RB-Net in DeepWonder achieved superior performance in terms of SBRs 
(Supplementary Fig. 5f), correlation scores (Supplementary Fig. 5g)  
and neuron finding scores on the same datasets (Supplementary Fig. 5h 
and Supplementary Note 1), while spending almost eightfold shorter 
time in removing background (Supplementary Fig. 5i). Owing to the 
high similarity between the synthetic data and the real recordings  
(Fig. 1f), the RB-Net entrained by synthetic data in DeepWonder effec-
tively removes backgrounds in experimental data (Fig. 1b, Extended 
Data Fig. 3 and Supplementary Video 1). With RB-Net we obtained an 
SBR improvement of more than 50-fold in experimental recordings 
compared with raw data across 1,543 neurons (Extended Data Fig. 3).

After separating neuronal signals from background contami-
nation, we then used a neuron segmentation network (NS-Net) that 
efficiently segmented neurons from background-decontaminated 
data (Fig. 1b). The NS-Net started with a lightweight convolutional 
neural network that segmented neurons from RB-Net output at a high 
speed (Extended Data Fig. 1b). Neurons were further semantically 
segmented on the basis of their spatio-temporal connectivity into 
mostly exclusive segments. The temporal activities of the individual 
neurons were directly read out since there was no inter-neuron cross-
talk (Extended Data Fig. 2a). Neurons that were tiled and overlapped 
were further demixed by a local nonnegative matrix factorization 
(NMF)35 algorithm to eliminate activities crosstalk (Extended Data  
Fig. 2b). NS-Net reliably demixed neurons that were as close as 0.3 of the 
neuron diameter, yielding a temporal similarity over 0.9 and a spatial 
similarity over 0.85 (Supplementary Fig. 6). Our NS-Net outperformed 
state-of-the-art neuron segmentation techniques such as CaImAn 
batch36, STNeuroNet31 and SUNS30 with the highest sensitivity and F1 
score in the background-decontaminated datasets (Supplementary 
Figs. 7e and 8b,d). The processing speed of NS-Net is eight times faster 
than CaImAn batch, five times faster than STNeuroNet and comparable 
to SUNS (Supplementary Figs. 7f and 8e).

By combining the optimized RB-Net and NS-Net into one frame-
work, our DeepWonder achieves a processing speed improvement of 
nearly tenfold (Fig. 1g and Extended Data Fig. 4) compared with the 
CNMF-E technique (Supplementary Note 1). DeepWonder additionally 
improves segmentation and activity inference accuracy, as illustrated 
by 11.1% improvement in F1 scores (Fig. 1h) and 21.5% improvement 
in temporal correlation scores (Fig. 1i). The RB-Net in DeepWonder 
circumvents the time-consuming background modeling process in 
CNMF-E and achieves background elimination through a single-shot 
workflow, where the processing speed is only affected by the scale 
of datasets. The processing speed compares even more favorably 
when cell density and cell number are higher, typically reaching 

in opaque tissue further deterioriates fluorescent signals originating 
from the focal plane and distorts information about neuron locations 
and activities. To reduce these effects, researchers typically have to 
sacrifice imaging speed22 or even sample health23.

Computational approaches can separate neuronal signals from 
background contamination in widefield microscopy. The constrained 
nonnegative matrix factorization (CNMF-E) approach models the 
strong background signals with prior knowledge of the spatiotemporal 
signal properties24. However, refining the background model for wide-
field imaging concomitantly requires sophisticated parameter tuning 
and is computationally demanding, precluding its use for cortex-scale 
neuronal processing25. Online processing with a lightweight version 
of the algorithm partially alleviates the speed problem, but at the 
expense of performance26. Other methods25,27,28 without explicit mod-
eling of the fluctuating background could achieve higher processing 
speed, but commonly face the risks of residual background contami-
nations26. Thus, analyzing widefield calcium recordings in scattering 
mammalian brains by established computational methods is far from 
optimal in terms of jointly achieving both high speed and considerable 
performance.

Artificial neural networks have achieved breakthroughs in neu-
ronal image processing tasks such as image enhancement29, neu-
ronal segmentation30,31 and spike inference32. With proper training, 
deep-learning-based neuronal activity inference in TPLSM data can 
achieve an order-of-magnitude-faster speed with no compromise in 
performance30. However, little attention has been paid to leveraging 
deep learning for background removal in widefield neuronal record-
ings, given the lack of paired widefield and background-free data for 
training. Methods that convert background models into trainable 
convolutional filters alleviate the requirement of paired data, but need 
per-sample retraining and compromise in performance compared with 
alternative neuron extraction methods26.

In this Article, we developed a deep-learning-based widefield 
neuron finder (DeepWonder), an efficient widefield neuronal extrac-
tion technique with an order-of-magnitude-faster speed and improved 
performance compared with alternative approaches. By leverag-
ing a hyperrealistic simulation of brain tissue33 to generate optical 
system-specific paired synthetic recordings with and without back-
ground, we circumvented the need for contamination-free, experi-
mentally acquired ground truth labels. We then developed an artificial 
neural network to separate neuronal signals from the scattered back-
ground (Fig. 1a, Extended Data Fig. 1 and Supplementary Video 1), as the 
first stage of DeepWonder. In the second stage, we then applied a light-
weight convolutional neural network to quickly segment the cleaned 
data into neurons to retrieve spatial footprints and temporal signals 
(Fig. 1b and Extended Data Fig. 2). Using both simulated and experimen-
tal data, we demonstrate a nearly tenfold processing speed acceleration 
and performance improvement with DeepWonder compared with the 
CNMF-E algorithm. We further validated the accuracy of DeepWonder 
on a hybrid system with simultaneous widefield and TPLSM recordings 
of diverse cortical areas across multiple animals in vivo. We deployed 
DeepWonder on multiple widefield calcium recording systems, includ-
ing the terabyte-scale real-time, ultra-large-scale, high-resolution 
(RUSH) system20 covering over 14,000 neurons, a large-FOV macro-
scope19, and a widefield hippocampal imaging system34. DeepWonder 
is available as a Python package.

Results
Removing background contamination through synthetic 
data-driven deep learning
Background contamination, which is mixed with crosstalk among  
neurons, neuropil and background fluorescence from out-of-focus 
depths, limits the achievable neuron detection sensitivity and signal 
extraction quality in widefield microscopy. In DeepWonder, we removed 
these confounds by establishing an artificial neural network that 

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-01838-7

a
Simulated brain tissues 

Simulated neurons

Realistic widefield capture

Background-free capture

Neuron 2

Neuron 1

Neuron 1

Neuron 2

Input

PSF

Output

RB-Net
RUSH

Macro
scope

x

z

y

b
Experimental capture

100 µm

100 µm

100 µm

10 s

Trained 
RB-NetVirtual capture

Virtual capture

Background-free movie
t t

Footprint

Segmentation

c d e

dF (a.u.)

Raw RB-Net Raw RB-Net

C
or

re
la

tio
n

0.2

0.4

0.6

0.8

1.0

lo
g(

SB
R)

0

2

4

6

f

1 2 3

Ru
nt

im
e 

(m
in

)

50

0

100

150

200

250

FOV (mm2)

g h i

D
en

si
ty

 (a
.u

.)

∆F/F

CNMF-E DeepWonder CNMF-E DeepWonder

1.0

–0.2 –0.1 0.1 0.20
0

1

Sc
or

e

C
or

re
la

tio
n

0.2

0

0.4

0.6

0.8

1Experiment

Simulation

CNMF-E

DeepWonder

F1 Precision Sensitivity

0.9

0.6

0.7

0.8

NS-NetActivity

*** ***

*****

100 µm

20 µm

Raw

RB-Net

Ground truth

2 s

Raw

RB-Net

Ground truth

N
eu

ro
n 

1

N
eu

ro
n 

2

Fig. 1 | Principle of deep-learning-enhanced widefield neuron finder 
(DeepWonder). a, Training stage of RB-Net in DeepWonder. On the basis 
of microscope and imaging parameters, the widefield simulator generates 
synthetic recordings with high similarities to experimental data as inputs to RB-
Net. Simultaneously, recordings with similar neuron distributions but without 
background contaminations as labels are generated. Both inputs and labels are 
used to train RB-Net such that it can restore background-free neuronal images 
from background-contaminated images. b, Illustration of the application of 
DeepWonder on experimental recordings. The trained RB-Net in DeepWonder 
removes the background of experimental recordings. A NS-Net then segments 
neurons and extracts neuronal signals from the movies without background.  
c, Restoration of calcium transients (corresponding to neurons labeled in a 
from the raw data (green) by DeepWonder (red). Traces without background 
contamination serve as ground truth (blue) for comparison. Fluorescence 
change (dF) scaled for clarity. a.u., arbitrary units. d, Neuronal signal correlations 
with ground truth in raw movie (green) and in DeepWonder-processed movie 
(red). ***P < 1 × 10−50, two-sided Wilcoxon signed-rank test, n = 901 neurons from 
six simulated recordings. Central black mark: median. Bottom and top edges: 
25th and 75th percentiles. Whiskers extend to extreme points excluding outliers 
(1.5 times above or below the interquartile range). e, SBR ratio of raw movie 
(green) and DeepWonder-processed movie (red). ***P < 1 × 10−50, two-sided 

Wilcoxon signed-rank test, n = 901 neurons from six simulated recordings. 
Box plot elements as in d. f, ΔF/F distributions of recordings simulated with 
NAOMi1p (red) and of experimental recordings (green). g, Runtime comparisons 
of CNMF-E and DeepWonder across different FOVs. The plot shows mean ± s.d. 
runtime, averaged over n = 5 recordings from two mice. In FOV of 3.54 mm2, 
the runtime reduction by DeepWonder is 9.10 ± 0.68 (mean ± s.d. across n = 5 
recordings). h, F1, precision and sensitivity scores of segmentation by CNMF-E 
are 0.81 ± 0.03, 0.75 ± 0.05 and 0.89 ± 0.04, respectively. F1, precision and 
sensitivity scores of segmentation by DeepWonder are 0.90 ± 0.03, 0.92 ± 0.03 
and 0.88 ± 0.04, respectively. Statistical scores are shown in mean ± s.d. 
across n = 10 simulated recordings. For F1 scores, **P = 0.002, two-sided 
Wilcoxon signed-rank test. Height of bars: mean. Error bars: s.d. Black dots: 
n = 10 simulated recordings. i, Correlation with ground truth of DeepWonder 
(red, 0.96 ± 0.09, mean ± s.d. across n = 714 neurons from five simulated 
recordings) and CNMF-E (green, 0.79 ± 0.14, mean ± s.d. across n = 5 recordings). 
***P < 1 × 10−50, two-sided Wilcoxon signed-rank test. White circle: median. 
Thick gray vertical line: interquartile range. Thin vertical lines: upper and lower 
proximal values. Transparent disks: data points. Transparent violin-shaped areas: 
kernel density estimate of data distribution. Scale bars, 100 µm and 10 s (a,b) and 
20 µm and 2 s in (c).
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nearly 20-fold improvement when the neuron density reaches 5,000 
cells mm−2 (Extended Data Fig. 4a). When processing calcium record-
ings of over 10,000 frames at 10 Hz, CNMF-E takes over 2 h on average, 
while DeepWonder takes only 11 min (Extended Data Fig. 4c). DeepWon-
der is also robust to noise and reaches F1 scores of 0.60 and temporal 
correlation scores of 0.77 in a condition with a low post-objective 
excitation power of 0.3 mW mm−2, which is 9-fold and 1.6-fold higher 
than CNMF-E, respectively (Supplementary Fig. 9). In moderately 
low excitation power situations (0.7 mW mm−2), DeepWonder still 
outperforms CNMF-E in accuracy with an F1 score of 0.82 relative to 
0.66 with CNMF-E.

Validation of DeepWonder through simultaneously acquired 
functional ground truth
To evaluate the inference accuracy of DeepWonder trained with 
simulated datasets, we next verify its performance with a standard 
two-photon microscope as the reference. We built a hybrid micro-
scopic device capable of both two-photon and widefield detection 
modalities. We sequentially switched the co-axis aligned two-photon 
and one-photon lightpath by timing control of a gated electrical 
optical modulator (EOM), light-emitting diode (LED) excitation 
and photon-sensitive photomultiplier tube (PMT) shutter in 30 Hz  
(Fig. 2a). The shutter was used to protect the sensitive PMT when strong 
widefield fluorescence was excited (Extended Data Fig. 5). We reduced 
the two-photon excitation numerical aperture (NA) to 0.27 such that 
the same neuron population could be detected by both the widefield 
and two-photon modalities (Supplementary Fig. 10). After image reg-
istration, we achieved 15 Hz widefield neuronal recordings and paired 
15 Hz two-photon recordings served as functional ground truth (Sup-
plementary Note 2). We found the RB-Net in DeepWonder effectively 
mapped background-overwhelmed widefield data into sharp ones simi-
lar to the two-photon recordings in both spatial profiles (Fig. 2b) and 
temporal activities (Fig. 2b,c). The correlation scores of DeepWonder 
output with two-photon signals reached 0.89 ± 0.08 (mean ± standard 
deviation (s.d.)), significantly outperforming the raw signals (n = 27 
neurons, ***P = 3.55 × 10–6, two-sided Wilcoxon signed-rank test; Fig. 2d 
and Supplementary Figs. 11 and 12). With DeepWonder, we detected 47 
neurons, with 44 of them matching active neurons from two-photon 
data, leading to an F1 score of 0.91 compared with 0.73 by CNMF-E  

(Fig. 2e). By analyzing 20 datasets from five mice, DeepWonder achieved 
over 0.8 median correlation scores in each of the datasets (Fig. 2f), and 
0.88 ± 0.05 (mean ± s.d.) precision scores (Fig. 2g) across all datasets, 
indicating that DeepWonder provides accurate neuronal segmentation 
and activity inference in mouse recordings. The high temporal fidelity 
of DeepWonder was further verified by a hybrid system that acquired 
high-NA two-photon ground truth (correlation scores of 0.83 ± 0.02, 
mean ± s.d., n = 1,545 neurons; two-photon excitation NA 0.6; Supple-
mentary Figs. 13 and 14). Further compared with CNMF-E, DeepWonder 
achieves both higher accuracy (F1 score 0.88 ± 0.03 of DeepWonder 
compared with F1 score 0.73 ± 0.13 of CNMF-E, mean ± s.d., n = 20; 
Fig. 2h) and higher signal correlations with two-photon ground  
truth (Fig. 2i).

To demonstrate that DeepWonder generalizes well in brain-wide 
widefield imaging, we used our hybrid microscopy strategy to evalu-
ate the performance of DeepWonder across multiple cortical regions, 
structures and depths in multiple animals. DeepWonder achieved 
equally high correlation scores, segmentation scores and calcium event 
detection F1 scores across positions spread out over 5 mm in anterior–
posterior direction (Extended Data Fig. 6a,b,g and Supplementary  
Fig. 15) and across similarly spread out medial–lateral positions 
(Extended Data Figs. 6c,d,h and Supplementary Fig. 16) from five ani-
mals. The mean correlation scores of DeepWonder across nine cortical 
regions was 0.82 ± 0.18 (mean ± s.d., n = 9 cortical regions; Fig. 2j), 
and the accuracy (F1 score) of neuron segmentation was 0.89 ± 0.02 
(mean ± s.d., n = 9 cortical regions; Fig. 2k). DeepWonder also has 
reliable performance near vessels (correlation score 0.83 ± 0.09, 
mean ± s.d., n = 121 neurons; Supplementary Fig. 17) or complex vascu-
lar structures (correlation score 0.84 ± 0.11, mean ± s.d., n = 64 neurons; 
Extended Data Fig. 7). Across cortical depths, DeepWonder achieved 
correlation scores of 0.81 ± 0.18 (mean ± s.d., n = 1,483 neurons), cal-
cium event detection F1 scores of 0.81 ± 0.11 (mean ± s.d., n = 1,483 
neurons), and segmentation F1 scores of 0.87 ± 0.11 (mean ± s.d., n = 29 
recordings) in z = 100–200 µm under the cranial window (Extended 
Data Figs. 8 and 9). Even in z = 250 µm, DeepWonder achieved passable 
performance with correlation scores of 0.68 ± 0.21 (mean ± s.d., n = 69 
neurons), which was significantly better than CNMF-E (0.58 ± 0.26, 
mean ± s.d.; **P = 0.03, two-sided Wilcoxon signed-rank test; Supple-
mentary Fig. 18). In data acquired from densely labeled tissue through 

Fig. 2 | DeepWonder achieves accurate neuron segmentation and activity 
inference validated by two-photon (2p) microscopy. a, The hybrid 
1p–2p microscope setup. LED, light-emitting diode light source; Ti:Sa, 
titanium:sapphire laser; M, mirror; DM, dichroic mirror; BS, beam splitter;  
Fm, emission filter; Fx, excitation filter; CL, collection lens; TL, tube lens;  
S, triggerable shutter; CAM, sCMOS camera; Obj, objective. Right box: control 
signals of the shutter, LED, EOM and camera exposure. b, Maximum intensity 
projection (MIP) of widefield (top), RB-Net in DeepWonder processed widefield 
movie (middle) and two-photon movie (bottom). Triangles mark neurons, and 
the corresponding temporal activities are plotted on the right side. The mean 
background value for widefield, DeepWonder and 2p movies are 0.64, 0.001 
and 0.12, respectively (normalized by maximum value). c, Zoom-in plots of 
temporal activities of neurons 14, 16 and 17 in the widefield raw movie (green), 
RB-Net processed movie (red) and 2p movie (blue.) d, Temporal correlations 
of 27 representative neurons, from raw data imaged with with 2p (0.68 ± 0.22, 
mean ± s.d.) and after processing with RB-Net (0.89 ± 0.08, mean ± s.d.). 
***P = 3.55 × 10–6, two-sided Wilcoxon signed-rank test. Central black mark: 
median. Bottom and top edges: 25th and 75th percentiles. Whiskers extend to 
extreme points excluding outliers (1.5 times above or below the interquartile 
range). e, DeepWonder (left) and CNMF-E segmentation results (right). Blue 
masks represent correct segments, green masks represent missed segments 
and pink masks represent false segments. The precision, sensitivity and F1 score 
of DeepWonder are 0.94, 0.88, and 0.91, while for CNMF-E are 0.56, 0.96, and 
0.73. f, Correlations of DeepWonder-extracted neuron activities with activities 
imaged with 2p across five animals and 20 recordings. Box plot elements as 
in d. g, Precision scores of DeepWonder segmented neurons with 2p dataset 

as the reference across five animals and 20 recordings reach 0.88 ± 0.05 
(mean ± s.d.). White circle: median. Thick gray vertical line: interquartile 
range. Thin vertical lines: upper and lower proximal values. Transparent disks: 
data points. Transparent violin-shaped areas: Kernel density estimate of data 
distribution. h, F1 scores of DeepWonder (red, 0.88 ± 0.03, mean ± s.d.) and 
CNMF-E (blue, 0.73 ± 0.13, mean ± s.d.) across five animals and 20 recordings. 
***P = 1.38 × 10–6, two-sided Wilcoxon signed-rank test. Box plot elements as in d. 
i, Temporal correlation of activities obtained with DeepWonder (red, 0.84 ± 0.15, 
median ± median absolute deviation) or CNMF-E (0.79 ± 0.21, median ± median 
absolute deviation) with activities derived from 2p across five animals and 20 
recordings (n = 1,570 neurons). ***P = 9.79 × 10–23, two-sided Wilcoxon signed-
rank test. Box plot elements as in d. j, Distribution of temporal correlation 
between DeepWonder-extracted traces and corresponding 2p ground truth 
in different brain regions from different animals. The correlation scores for 
primary motor area layer 1 (MOp1), secondary motor area layer 1 (MOs1), primary 
somatosensory area lower limb layer 1 (SSp-ll1), primary somatosensory area 
upper limb layer 1 (SSp-ul1), primary somatosensory area trunk layer 1 (SSp-tr1), 
anteromedial visual area layer 1 (VISam1), retrosplenial area lateral agranular 
part layer 1 (RSPagl1), retrosplenial area dorsal part layer 1 (RSPd1) and anterior 
area layer 1 (VISa1) are 0.85 ± 0.15, 0.81 ± 0.19, 0.84 ± 0.14, 0.80 ± 0.17, 0.82 ± 0.22, 
0.90 ± 0.05, 0.80 ± 0.18, 0.80 ± 0.21 and 0.82 ± 0.16, respectively (mean ± s.d.). 
n = 40 sites are recorded from four animals. Violin plot elements as in g.  
k, Spatial distribution of neuron detection accurate scores (F-score) achieved by 
DeepWonder overlaid with Allen CCF atlas42. n = 40 sites are recorded from four 
animals. Scale bars, 50 µm and 20 s (b), 20 s (c) and 50 µm (e).
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virus transduction, DeepWonder also showed no compromise in per-
formance with correlation scores of 0.83 ± 0.13 (mean ± s.d., n = 650 
neurons) and segmentation F1 scores of 0.88 ± 0.10 (mean ± s.d., n = 13 

recordings, Extended Data Fig. 10). Compared with an end-to-end arti-
ficial neural network that is trained to directly map widefield frames to 
background-free frames using data from the proposed hybrid system, 
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Fig. 3 | DeepWonder realizes high-speed processing of widefield neuronal 
recordings at terabytes scale. a, MIP of raw RUSH video (top) and background-
corrected movie by DeepWonder (bottom). Orange dashed boxes mark 
zoom-in four areas in the cortex, with DeepWonder segmentation overlaid. The 
mean background value for widefield and DeepWonder are 0.58 and 0.0004, 
respectively (normalized by maximum value). b, Inferred calcium activities from 
four different areas marked by the dashed box with neuron number labeled.  
c, Runtime comparisons between CNMF-E and DeepWonder across 12 FOVs in RUSH 
over 8,000 frames recordings. Each dot shows the processing time for each FOV. 
Central black mark: median. Bottom and top edges: 25th and 75th percentiles. 
Whiskers extend to extreme points excluding outliers (1.5 times above or below 
the interquartile range). Black circles: n = 12 FOVs. d, Temporal activity rendering 
of 14,226 neurons inferred by DeepWonder in a 13.5 min recording. Two zoom-in 
panels show example traces (each with 100 traces). The dashed yellow line 
indicates the dosage of 2% isoflurane for anesthesia at 5th minute after the 

secession start. e, The contour plot of all neurons detected by DeepWonder (left) 
and CNMF-E (right) superimposed on the s.d. of background-corrected images 
and correlation image, respectively. Compared with manual segmentation, 
deep blue circles mark correct segments in both methods, red circles mark 
incorrect segments in each of the methods, green circles mark missed segments, 
and shallow blue circles mark correct segments that appear only in the current 
method. f, Spatial components of ten example neurons detected by both 
DeepWonder (left) and CNMF-E (right). g, The SNR of all neurons detected by 
DeepWonder (vertical axis) and CNMF-E (horizontal axis) in e. h, F1, precision and 
sensitivity scores of segmentation in e by CNMF-E are 0.74 ± 0.06, 0.58 ± 0.07 and 
0.88 ± 0.04, respectively. F1, precision and sensitivity scores of segmentation by 
DeepWonder are 0.87 ± 0.10, 0.91 ± 0.09 and 0.88 ± 0.07, respectively. Statistical 
scores are shown in mean ± s.d. across n = 5 recordings in a single animal. Height 
of bars: mean. Error bars: s.d. Black dots: n = 5 recordings. Scale bars, 500 µm (a), 
50 µm (zoom-in areas of a), 20 s (b) and 50 µm (e).
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DeepWonder driven by virtual calcium recordings exhibits higher 
correlation scores (0.85 ± 0.12 compared with 0.74 ± 0.22, mean ± s.d., 
n = 260 neurons; Supplementary Fig. 24).

DeepWonder effectively removes background contamination 
in multi-region recordings
The computational efficiency of DeepWonder enables us to process 
cortex-wide neuronal recording within acceptable time frames, which 
we demonstrate on data acquired with the terabytes-scale RUSH sys-
tem20. The RUSH system consists of tens of scientific complemen-
tary metal-oxide semiconductor (sCMOS) cameras, with a total of 
14,800 × 15,200 pixels across 10 × 8 mm2 FOV in 0.8 µm sampling size 
at video rate, allowing population-scale neuron connection inference. 
We simulated lifelike neuron recordings based on optical parameters of 
the RUSH system (Supplementary Fig. 1), and trained DeepWonder for 
the data modality of the RUSH system. With DeepWonder, neurons that 
were hidden in highly fluctuating backgrounds were clearly discern-
ible (Fig. 3a and Supplementary Video 3), and high-contrast calcium 
transients were uncovered (Fig. 3b) thanks to effective background 
suppression (Extended Data Fig. 3 and Supplementary Fig. 19a,b). The 
high data throughput by the RUSH system yielded over 1 TB of data in 
a 13.5 min imaging session at 10 Hz. Processing such a dataset with the 
CNMF-E technique took over 5 days to fully demix neuron activities 
(132.4 h in total, without counting the loading time; Fig. 3c). In con-
trast, with DeepWonder, data of the same scale can be analyzed and 
inferred within 17 h. Up to 14,226 neurons across nine cortical areas 
were found with clearly discernible activities (Fig. 3d), showing poten-
tial for interrogating behavior-related neuron population response 
spanning over multiple cortical regions. When the awake mouse was 
anesthetized in the fifth minute with 2% isoflurane37, we observed that 
neurons gradually became inactive across different cortical regions 
with different dynamics (Fig. 3d and Supplementary Fig. 20). We further 
manually annotated neurons in a small FOV (~450 µm × 450 µm), and 
found DeepWonder achieved superior neuron segmentation compared 
with CNMF-E (Fig. 3e). The neurons segmented by DeepWonder were 
more concentrated in round shapes compared with those segmented by 
CNMF-E (Fig. 3f and Supplementary Fig. 19i), and the extracted calcium 
activities exhibited higher signal-to-noise ratios (SNRs; Fig. 3g and 
Supplementary Fig. 19h). DeepWonder achieved 0.87 ± 0.10 F1 scores 
in finding valid neurons compared with 0.74 ± 0.06 (mean ± s.d., n = 5 
recordings; Fig. 3h and Supplementary Fig. 19e) by CNMF-E.

DeepWonder is also designed to be a general technique that can 
be compatible with various widefield calcium imaging systems. In 
a macroscope with a photographic lens as the objective19, neurons 
were largely undersampled by ~5 × 5 pixels laterally as a tradeoff for 
achieving a multi-millimeter FOV. We simulated hyperrealistic neuron 
recordings based on magnification, NA and other optical parameters of 
the macroscope system (Supplementary Fig. 2) to train DeepWonder. 
We found DeepWonder effectively reduced fluctuating backgrounds 
and segmented neurons efficiently (Supplementary Fig. 21a,b and Sup-
plementary Video 4). DeepWonder achieved 0.88 F1 scores compared 
with 0.81 by CNMF-E with manual labeling as ground truth (Supplemen-
tary Fig. 21c,d). Neurons found by DeepWonder exclusively showed 
high-contrast calcium dynamics and compact shapes (Supplemen-
tary Fig. 21f). We further conducted hippocampal imaging through a 
glass pillar that periscoped the CA1 surface area to the objective focal 
plane for detection34 in the hybrid widefield and two-photon system 
(Supplementary Fig. 22a). DeepWonder faithfully uncovered neu-
rons that were largely blurred in the raw widefield movie but detected 
by two-photon microscope (Supplementary Fig. 22b). Even though 
the CA1 neurons have different morphology compared with cortical 
neurons that were used to train DeepWonder, DeepWonder accom-
plished neuron detection and extraction with 0.81 ± 0.19 (mean ± s.d., 
n = 232 neurons) correlation scores compared with 0.60 ± 0.22 by 
the raw movie (Supplementary Fig. 22d), and 0.89 ± 0.07 F1 score in 

segmentation (Supplementary Fig. 22e). The demonstrations across 
multiple modalities illustrate the potential of DeepWonder in analyzing 
various widefield neuronal recordings. To aid researchers, we further 
supply a pretrained DeepWonder model that can be quickly adapted 
to different conditions without compromise in performance (Sup-
plementary Fig. 23 and Supplementary Note 3).

Discussion
While the proposed hybrid system allows for an artificial neural network 
to be trained to transform widefield frames to two-photon frames, 
DeepWonder trained by virtual calcium recordings outperformed it 
for manifold reasons. Firstly, pixel-level alignment of widefield and 
background-free recording is crucial for algorithm training, which 
is readily guaranteed using synthetic data but difficult to achieve 
using two-photon data as labels. Secondly, shot-noise-contaminated 
two-photon ground truth pollutes training labels and degrades perfor-
mance. On the other hand, synthetic datasets based on hyperrealistic 
tissue simulation and real imaging model remove noise from labels and 
make the algorithm more stable. More importantly, the cross-modality 
training approach requires a hybrid imaging system as described in the 
article that is complicated to build, cost unfriendly and even inappli-
cable in certain situations (for example, head-mounted microscope), 
whereas DeepWonder can be applied to any widefield system.

The synthetic data-fueled training scheme in DeepWonder can 
be generalized into various applications. By modifying the synthetic 
recordings, the DeepWonder concept is also positioned to analyze 
the functional signals acquired with other indicators38. Analogously, 
reinforcing DeepWonder with volumetric imaging models such as 
light-field microscopy39 and multifocus microscopy40 enables infer-
ring volumetric neuronal activities at high speed. On the other hand, 
utilizing generative adversarial networks for enhancing the virtual 
data generation holds potential to further improve the performance 
of DeepWonder41. We anticipate that our method lowers the barrier of 
processing neuronal data by high-throughput and large-scale widefield 
microscope, and promotes whole brain and million-level neuronal 
recordings and analysis.
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Methods
One-photon and two-photon joint validation
To valid our algorithms in achieving correct neuronal activities, we built 
a joint two-photon and widefield detection system. The system was 
based on standard TPLSM, while we further added a 470-nm-centered 
widefield illumination path and a camera detection path in the system. 
The schematic of the custom-built two-photon microscope is shown 
in Extended Data Fig. 5. A titanium-sapphire laser system (MaiTai HP, 
Spectra-Physics) served as the two-photon excitation source (920 nm 
central wavelength, pulse width <100 fs, 80 MHz repetition rate). A 
half-wave plate (AQWP10M-980, Thorlabs) and an EOM (350-80LA-02, 
Conoptics) were used to modulate the excitation power. A 4f system 
(AC508-200-B and AC508-400-B, Thorlabs) with a 2× magnification 
was used to expand the laser beam to a resonant scanner (8315K/
CRS8K, Cambridge Technology). The scanned beam went through a 
scan lens (SL50-2P2, Thorlabs) and a tube lens (TTL200MP, Thorlabs) 
and formed a tight focus through a high-NA water immersion objec-
tive (25×/1.05 NA, XLPLN25XWMP2, Olympus). A high-precision piezo 
actuator (P-725, Physik Instrumente) drove the objective for fast axial 
scanning. To match the two-photon excitation range with the widefield 
detection range, we reduced the beam size at the back aperture of the 
objective with an iris. The effective excitation NA was about 0.27 in 
our imaging experiments, yielding ~20 µm axial range (Supplemen-
tary Fig. 10). A long-pass dichroic mirror (DMLP650L, Thorlabs) was 
used to separate fluorescence signals from femtosecond laser beam 
by reflecting the fluorescence signals and transmitting the infrared  
laser light.

For the widefield excitation path, a long-pass dichroic (DMLP505L, 
Thorlabs) in the original detection path of TPLSM was used to send 
blue LED light (M470L4-C1 and MF475-35, Thorlabs) to the objective. 
To jointly record widefield excitation and two-photon excitation, a 
50:50 (reflectance:transmission) nonpolarizing plate beam splitter 
(BSW27, Thorlabs) was placed after the widefield dichroic to separate 
fluorescent signals for PMT (PMT1001, Thorlabs) and camera (Zyla 4.2, 
Andor), respectively. A pair of fluorescence filters (MF525-39, Thorlabs; 
ET510/80M, Chroma) was configured in front of both the PMT and the 
camera to fully block both femtosecond laser and widefield excitation 
beam. The back aperture of the objective was optically conjugated 
to the detection surface of the PMT with a 4f system (TTL200-A and 
AC254-050-A, Thorlabs).

To avoid excitation crosstalk and protect PMT from high-flux 
widefield emission photons, we added a linear galvo that served as an 
optical shutter for the PMT detection path, which deflected widefield 
fluorescent photons when LED was on (Extended Data Fig. 5a). We 
further configured the EOM to be blocked during widefield imaging. 
The LED (M470L4-C1) was in trigger mode with a typical rising and 
falling time less than 1 ms, with further reduced duration time to avoid 
PMT overexposure (Extended Data Fig. 5b). To further validate the cor-
rectness of DeepWonder signals, we modified our hybrid system with 
high-NA two-photon excitation (NA 0.6). The optical setup was similar 
to the low NA (NA 0.27) in Extended Data Fig. 5, but the beam expan-
sion after the EOM was increased for achieving high-NA point spread 
function (PSF). Both high-NA two-photon and widefield captures were 
at 15 Hz. The calibrated high-NA two-photon excitation had a 1/e axial 
PSF width of 5 µm, compared with 25 µm by a NA 0.27 excitation PSF.

Realistic widefield capture generation
To synthesize a realistic cortical tissue and generate corresponding 
widefield capture, we referred to the Neural Anatomy and Optical 
Microscopy (NAOMi)15 package. Using NAOMi, a brain tissue volume 
was populated with multiple blood vessels, as well as with neuron 
somata, axons and dendrites. Neurons and dendrites were assigned 
synthesized fluorescence activity that reflected their calcium dynam-
ics. A tissue-specific PSF was generated by layer-to-layer Fresnel propa-
gations from deep tissue to the camera sensor.

While original NAOMi was used to simulate two-photon excitations, 
here we modified the original NAOMi pipeline such that it could faith-
fully simulate data acquisition of one-photon excitations, which was 
termed as NAOMi1p. We changed the excitation wavelength from the 
near-infrared range into the visible range. In two-photon microscope, 
scattering-induced aberrations in the excitation beam instead of the 
emission beam affect the imaging quality due to the point-scanning man-
ner. Contrastingly, in widefield microscope, scattering-induced aberra-
tions cause troubles in emission paths instead of excitation paths due 
to the planar collection from different camera pixels. We thus modified 
the optical PSF generation on the basis of the propagation of the emis-
sion beam instead of the excitation beam through the tissue. We further 
replaced the two-photon absorption process with one-photon absorp-
tion process in a model of power density, fluorescent concentration, 
extinction coefficient, quantum yield and fluorescent protein expression 
level43. The final simulated recordings have three contributors: fluo-
rescence from active neurons, fluorescence from dendrites and axons 
in the background, and fluorescence from out-of-focus backgrounds. 
The assembly of all three parts faithfully generates a virtual capture of 
widefield recordings, while using fluorescence from active neurons only 
generates a background-free label. Especially, for soma target indica-
tors44 it is recommended to let only the soma fire. The above tools are 
summarized as the NAOMi1p toolbox and are open to all the community. 
To accommodate different imaging systems, NAOMi1p opens multiple 
parameters including the acquisition NA, camera pixel size, magnifica-
tions, illumination power, FOV and indicator types for users to adjust. To 
control the distributions of the pixel histogram of the NAOMi1p output 
to be similar with experimental data, the number and the peak activity 
of neuropils were adjusted, which effectively modulates histograms but 
did not disturb neuronal dynamics. A linear mapping was further con-
ducted such that the position and spread of the histograms were similar 
to the experimentally captured data. To equalize the distribution of ΔF/F 
between experimental data and NAOMi1p output, we firstly calculated 
the background ΔF/F histogram of an experimental video (MATLAB func-
tion histogram) as a reference. We then controlled the spike number of 
each neuropil candidate to match that reference histogram. With these 
adjustments, the output ΔF/F and also the maximum ΔF/F value distribu-
tions could be highly similar to experimental data.

We notice that some cortical regions have rich vascular popula-
tions, which might disturb neuronal extraction by DeepWonder45. At 
the statistical level, we have proven that DeepWonder achieves satisfac-
tory performance on regions that contain blood vessels (Extended Data 
Fig. 7 and Supplementary Fig. 17). However, we found that there was a 
slight drop of correlation scores when the neuron–vessel distance is 
smaller than 20 µm (0.74 ± 0.15 correlation score when neuron–ves-
sel distance is near zero, compared with 0.85 ± 0.13 correlation score 
when neuron–vessel distance is 30 µm; Supplementary Fig. 25c). Note 
the portion of neurons that are within that affected ranges are small in 
the all inferred neuron populations (36/492 ≈ 7.3%, summarized from 
n = 4 datasets). On the other hand, to further increase the performance 
of DeepWonder in the conditions that neurons are very close to ves-
sels (for example, neuron–vessel distance is smaller than 20 µm), we 
incorporated hemodynamics modeling in NAOMi1p. We introduced 
random dilations of vessels during virtual widefield capture simulation 
(Supplementary Fig. 25d,e). The dilations are varied in different FOV 
positions to mimic the physical vessel movement. The vessel-aware 
NAOMi1p model enables DeepWonder to achieve better performance 
on neurons that are close to vessels (Supplementary Fig. 25g), but takes 
longer time to generate training data.

With NAOMi1p, we can faithfully generate virtual widefield record-
ings as well as their background-free counterpart. We then picked up 
neurons that were within the range of axial PSF diameter (Gaussian 
beam, 1/e2 size) and registered their positions and activities as ground 
truth for simulation comparisons among different analysis algorithms 
(Supplementary Note 1).
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Noise simulation
Imaging sensors (for example, sCMOS, CMOS and charge-coupled 
device) have different quantum efficiency and noise response, which 
is also highly coupled with the expression level of calcium indicators in 
neurons. We thus simulated the NAOMi1p data with a range of noise to 
cover those situations. The number of fluorescence photons generated 
in a unit area of the samples is43

Np ∝ Q ⋅ ϵ ⋅ F (x, y) ⋅ P ⋅ τ

where Q is the quantum efficiency of fluorophores with an extinction 
coefficient ϵ, F(x,y) is the local fluorophore concentration, P is power 
density and τ is the integration time of the camera. The signal of a 
camera can be further interpreted as46

Zp = γpPois {Np} + N (0, σR) + βp

where γp is a multiplicative factor which is applied to the Poisson dis-
tribution (Pois) as the camera gain. βp  is a bias during analog-to-digital 
conversion. N(0,σR)  is the Gaussion-distributed readout noise with 
zero mean and σR standard deviation. For a typical sCMOS, γp is ~2.2, βp 
is ~100 and σR is ~200 (ref. 47).

Widefield imaging setups and recordings
RUSH recordings. In the RUSH system20, a 5 × 7 customized field lens 
array was mounted on a spherical surface for full correction of field 
curvature of a 10 mm × 12 mm FOV. The customized objective provides 
0.35 NA across the centimeter-scale FOV, supporting submicron resolu-
tion observation. The pixel resolution of each camera in RUSH system is 
2,560 × 2,160, yielding 6.3 GB data per minute at 10 Hz. A mouse with a 
7 mm cranial window takes 12 sub-FOVs of RUSH, and a 13.5 min record-
ing take over 1 TB of data (Fig. 3 and Supplementary Figs. 19 and 20). To 
generate virtual recordings for DeepWonder training, we fed the fol-
lowing typical parameters to the data generator: system magnification 
10, NA 0.35, pixel size 0.8 µm, frame rate 10 Hz and illumination power 
density 0.8 mW mm−2. We evaluated the similarity of generated data 
with raw recordings in terms of pixel histogram, functional fluctuation 
histogram and spatial frequency distribution (Supplementary Fig. 1).

Macroscope recordings. We used a 50 mm camera lens (Canon EF 
50mmf/1.4 USM) as the objective lens and a 100 mm camera lens 
(MINILTA AF 100mmf/2.8) as the tube lens to set up the widefield 
macroscope. The illumination was provided by a collimated blue LED 
(SOLIS-470C, Thorlabs) with an excitation filter (FESH0500, Thorlabs). 
The beam was focused by a lens (AC508-100-A, Thorlabs), reflected by 
a dichroic mirror (DMLP505L, Thorlabs), passed through the objective 
lens and excited the sample. The fluorescence was collected by the 
same objective lens and refocused on the sCMOS camera (Zyla 5.5, 
Andor) by the tube lens. An emission filter (MF525-39, Thorlabs) was 
placed before the camera to eliminate the excitation light. The FOV 
of the system was approximately 9.2 mm × 7.7 mm, and each pixel in 
the sCMOS corresponded to 3.6 µm on the image plane. To generate 
virtual recordings for DeepWonder training, we fed the following 
typical parameters to the data generator: system magnification 1.8, 
NA 0.3, pixel size 3.6 µm, frame rate 10 Hz and illumination power 
density 0.8 mW mm−2. We evaluated the similarity of generated data 
with raw recordings in terms of pixel histogram, functional fluctuation 
histogram and spatial frequency distributions (Supplementary Fig. 2).

Network architecture and training
RB-Net. The main structure of the RB-Net is 3D Unet. The encoding path 
and decoding path consist of three convolutional blocks (Extended 
Data Fig. 1a). For accelerating removing background process, we 
added a ‘spatial to channel’ downsampling operator48 at the begin-
ning of RB-Net for reshaping the input image of size W × H × C into 

W/2 × H/2 × 4C (W for filter width, H for filter height and C for filter 
channels; Extended Data Fig. 1c). We also introduced a ‘channel to 
spatial’ upsampling operator at the end of RB-Net for realigning pixels 
(Extended Data Fig. 1c). With these two operators, the pixel number of 
an input image processed by RB-Net can be increased by four times at 
almost the same graphics processing unit (GPU) memory cost (Sup-
plementary Fig. 3a,b). We utilized a linear transformation of raw input 
images x for data augmentation as

y = γ ⋅ (x + β) ,

where y is input images for RB-Net, γ and β are random number 
(0.2 < γ < 2,0 < β < max(x)). The stride size l of ‘spatial to channel’ and 
‘channel to spatial’ operators is crucial for performance, where l × l 
pixels from the input are realigned into l2 channels. The stride size l was 
optimized to achieve the best performance (l = 2; Supplementary Fig. 
3c,f). We found that the ‘spatial to channel’ operator had a superior 
performance compared with a large convolutional filter with a large 
stride, even computing time of both approaches are similar (Supple-
mentary Fig. 26). Data augmentation was constructive to the generali-
zation ability and transfer learning ability of RB-Net.

We synthesized 23 sets of background-removed data by the 
NAOMi1p algorithm and randomly split them into 4,000 paired patches 
for training RB-Net. The input raw videos were mean subtracted. It took 
48 h to train RB-Net for 30 epochs with a Geforce RTX 3080 GPU. The 
running speed for RB-Net is usually 40 ms per 750 × 750-pixel frame 
tested in an RTX 3080 GPU.

NS-Net. The main structure of the NS-Net is 3D Unet, which has the 
similar structure with the RB-Net but with different channels (Extended 
Data Fig. 1b). On the other hand, because neuron segmentation in 
background-free data is simpler than removing background, we uti-
lized the combination of a 1 × 1 × 3 filter and a 3 × 3 × 1 filter in NS-Net 
to replace two 3 × 3 × 3 filters for reducing network parameters and 
computational consumption.

The training data for NS-Net were directly generated from 
NAOMi1p generator, where neuron soma that was within the  
range of axial PSF diameter (Gaussian beam, 1/e2 size) was binarized 
as the segmentation label. We simulated 45 sets of neuron segmenta-
tion data and randomly generated 4,000 paired patches for training 
NS-Net. We spent 8 h training NS-Net for 30 epochs with a Geforce 
GTX 1080TI GPU.

Processing of widefield calcium data
Widefield calcium recordings were firstly sent to trained RB-Net to get 
a de-background clean movie, then the background-free movie was 
further sent to trained NS-Net for acquiring neuron candidate masks 
(Extended Data Fig. 2a). We grouped and merged candidates from all 
frames into connected regions to form unique segments. We then 
conducted the connectivity analysis for every candidate of the mask 
sequence spatio-temporally and extracted every separated neuron to 
compose a neuron candidate list. Those spatially overlapped but tem-
porally separated (for example, neuron segments appear in different 
frames) were registered as different candidates. With the neuron can-
didate list, we classified these neurons by neuron morphology metrics 
related to area and roundness θ = 4π ⋅ s

p2
, where s is the area of neuron 

and p is the perimeter of neuron. We abandoned the neuron candidates 
that were smaller than the 25 µm2 threshold. Since the roundness θ is 
a good indicator to judge if the candidate consists of a single neuron 
or multiple neurons, we further classified neuron candidates whose 
roundness were higher than the standard roundness of a single neuron 
(typically θ = 0.8) to form a ‘good’ neuron list, and others into a ‘bad’ 
neuron list (Extended Data Fig. 2b). The candidates in the ‘good’ neuron 
list were sent out for directly reading out temporal activities from the 
background-removed movie based on values of exclusive pixels 
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(Extended Data Fig. 2a). For each candidate in the ‘bad’ neuron group, 
the candidate was initialized by greedy methods24 and then sent to local 
NMF for further demixing. If we marked the local area surrounding the 
candidate as Y ∈ Rd1×d2×T, and the candidate was estimated to be con-
sisted by K neurons, the local NMF model was then

min
A,C

Y − AC2
F + αAA1 + αCC1,

where A ∈ Rd1×d2×K and C ∈ RK×T represented the spatial and temporal 
footprints, respectively24. We solved the above optimization problem 
through the hierarchical alternating least squares algorithm35. Finally, 
we merged neurons by clustering components with high temporal 
correlations and spatial overlap ratios. We compared DeepWonder 
with various widefield neuron extraction and activity inference meth-
ods (parameter settings can be found in Supplementary Note 1). All 
methods were run in the same machine, which has an Intel I9-9980Xe 
central processing unit, 128 GB random-access memory and an RTX 
3080 GPU.

Mouse preparation and calcium imaging
All animal experiments were performed following institutional and 
ethical guidelines for animal welfare and have been approved by the 
Institutional Animal Care and Use Committee of Tsinghua University. 
Mice were housed in cages (24 °C, 50% humidity) in groups of one to 
five under a reverse light cycle. Both male and female mice were used 
without randomization or blinding.

We used Rasgrf2-2A-dCre mice ( JAX 022864) crossed with Ai148 
(TIT2L-GC6f-ICL-tTA2)-D ( JAX 030328) transgenic mice for most of 
cortical functional imaging. Adult transgenic mice at 8–12 postnatal 
weeks were anesthetized with 1.5% isoflurane, and craniotomy surger-
ies were conducted with a stereotaxic instrument (68018, RWD Life 
Science) under a bright-field binocular microscope (77001S, RWD 
Life Science). A custom-made coverslip fitting the shape of the cranial 
window was cemented to the skull. A biocompatible titanium headpost 
was then cemented to the skull for stabilization during imaging. The 
edge of the cranial window was enclosed with dental cement to hold 
the immersion water of the objective. After the surgery, trimethoprim 
was injected into the mice intraperitoneally for inducing the expres-
sion of GCaMP6f in layer 2/3 neurons (0.25 mg g−1). To reduce potential 
inflammation, 5 mg kg−1 (body weight) of ketoprofen was injected sub-
cutaneously. Each mouse was housed in a separate cage for 1–2 weeks 
of postoperative recovery.

We used Rasgrf2-2A-dCre mice ( JAX 022864) crossed with 
Ai148 (TIT2L-GC6f-ICL-tTA2)-D ( JAX 030328) transgenic mice with 
adeno-associated virus injection for both cortical and hippocampal 
imaging (Supplementary Fig. 22). We prepared the mice using the 
same procedures as above, except (1) the cortex matter (1.5 mm distant 
from the sagittal suture and 2 mm distant from the lambdoid suture) 
was aspirated via a 0.9-mm-diameter (19 gauge) blunt needle that 
was connected to a vacuum pump34; (2) we injected cocktail of AAV2
/9-hSyn-FLEX-GCaMP6f-WPRE-pA and AAV2/9-hSyn-Cre-WPRE-pA into 
the hippocampal area; (3) a chronic window with a glass pillar (0.9 mm 
in thickness and 2 mm in diameter) attached was implanted above the 
cortex, and the pillar sit directly above the hippocampal CA1 area34 
instead of the flat coverslip.

We used adeno-associated virus transduced C57BL/6J mice for 
verification of the generalization ability of DeepWonder (Extended 
Data Fig. 10). We prepared the mice using the same procedures as the 
above transgenic mice, except (1) expression was achieved through 
injection of a genetically expressed calcium indicator adeno-associated 
virus (AAV1-hSyn1-GCaMP6f) at ~1–2 weeks before cranial window 
implantation (ten sites with 400 µm spacing at a depth of 300 µm 
below the dura, 25 nl for each site, titer ~1012 viral particles ml−1); (2) no 
trimethoprim was injected into the mice for inducing layer-2/3-specific 
expression.

Imaging experiments were carried out when the cranial window 
became clear and no inflammation occurred. Mice were first rapidly 
anesthetized with 3.0% isoflurane and then fixed onto a custom-made 
holder by the headpost. A precision three-axis translation stage (M-VP-
25XA-XYZL, Newport) carried the mice for a proper ROI. For two-photon 
validation experiments, the correction ring of the 25× water immersion 
objective was adjusted to compensate for the coverslip thickness 
and eliminate spherical aberrations. The highest excitation power 
of two-photon microscope after the objective was under ~100 mW to 
avoid heat damage. During the imaging session, gaseous anesthesia 
was turned off and the mouse was kept awake. For widefield acquisi-
tions, the excitation power density in the cranial window area was 
no more than 1.5 mW mm−2. Before running further analysis, we ran 
calcium movie registrations with open-source NormCorre algorithm49 
to cancel motion artifacts. In cortex-wide brain imaging, we aligned the 
recorded brain area into Allen CCF atlas on the basis of the recorded 
position of the cranial window by the stereotaxic instrument when 
applying brain surgery.

Performance metrics
Correlation score. We used Pearson’s correlation coefficient as the 
temporal metric to monitor the similarity between inferred neuronal 
activities and ground truths. The ground truth activities were avail-
able for simulation data, while for joint one-photon and two-photon 
validation data, the ground truth activities were established by running 
CaImAn36 on two-photon datasets (Supplementary Note 2).

Neuron finding scores. It is necessary to establish ground truth seg-
mentation for comparing the neuron finding scores. In simulation 
data, the ground truth segmentation was readily available. In joint 
one-photon and two-photon validation data, the ground truth segmen-
tation was established on the basis of CaImAn processed two-photon 
data (Supplementary Note 2). In widefield experimental data, we manu-
ally labeled the neurons on the basis of their positions and activities. 
We firstly calculated the correlation images of the raw recordings36, and 
worked over every structure that was different from the background 
and matched the neuron size (typically ~10–15 µm in diameter). We 
rejected candidates that with weak and noisy activities in the raw movie. 
We outlined each cell of interest with the ROI manager in ImageJ, and 
imported the zipped ROIs into MATLAB as ground truths for compari-
son with other methods.

After achieving segmentation ground truth, a customized script 
in MATLAB automatically evaluated segmentation by the following 
rules: a candidate is a correct segment (true positive, TP) if the minimal 
distance between this candidate with any ground truth segments is less 
than 8 µm, and the Intersect over Union score between this candidate 
and that ground truth segment is larger than 0.2. Otherwise, the seg-
mentation candidate will be rejected as a false positive (FP). Segments 
appear in ground truth labeling but are not recognized by the algorithm 
will be marked as false negatives (FN). The segmentation accuracy  
(F score, F1) is defined as

F1 = 2TP
2TP + FP + FN .

The segmentation precision score is defined as

Precision = TP
TP + FP .

The segmentation sensitivity score is defined as

Sensitivity = TP
TP + FN .
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SBR. We calculated the SBR of a neuron by computing the maximum 
activity of the neuron area over the maximum activity of its neighbor-
ing area (Extended Data Fig. 3c) across all temporal frames. The neuron 
area was defined by a circle that had a radius of 10 µm and was centered 
at the centroid of a segment. A neighboring area was defined by a ring 
with an inner radius of 10 µm and an outer radius of 20 µm at the same 
center of the corresponding neuron area while masking out all other 
neuron areas.

SNR. We computed the SNR of inferred cellular traces to quantitatively 
compare the temporal inference quality24. We calculated the denoised 
trace c of each inferred activity y using OASIS50, and the SNR was  
computed through

SNR =
c22

y − c22
.

Calcium event detection scores. To achieve the quantification of 
calcium event restoration ability in experiments, we firstly deconvolved 
the calcium traces of DeepWonder-processed widefield recordings and 
CaImAn-processed 2p recordings using OASIS50, which output a spike 
train based on an autoregressive (AR) model:

ct =
p
∑
i=1

γict−i + st,

where ct is the calcium fluorescence intensity, p is the order AR model 
(p = 1 in this research), γi are AR parameters and st represents spikes. 
We labeled a 2p transient st was restored by DeepWonder if there was 
a DeepWonder spike near the 2p spike in a window of 300 ms, con-
sidering the relatively slow kinetics of the calcium indicator. We then 
calculated the precision, sensitivity and F1 score of calcium event 
restoration as defined above.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
We have mounted our demo data and codes in Google Colab. A demo 
script with full processing of DeepWonder on several demo datasets 
(including NAOMi1p virtual datasets, cropped RUSH datasets and 
two-photon validation datasets) is available through Colab via https://
colab.research.google.com/drive/15TvsyEYgE1iGpaNWkq3flXOw5
2I51mVa. Over 50 Gb paired 2p and widefield data have been made 
publicly available through https://drive.google.com/drive/folders
/1OBcQUY-vsIPljSBChFfn-zqAYtYvDZ4A?usp=sharing. The Allen CCF 
atlas is available at http://atlas.brain-map.org. Source data are provided 
with this paper.

Code availabIlity
Our DeepWonder with realistic widefield imaging simulators can be 
found at https://github.com/yuanlong-o/Deep_widefield_cal_inferece 
and is available in Supplementary Software 1 under an open source 
license permitting not-for-profit research use (see file LICENSE.txt). An 
archived version of DeepWonder packages is available through https://
pypi.org/project/DWonder. Source data are provided with this paper.

References
43. Sandison, D. R. & Webb, W. W. Background rejection and 

signal-to-noise optimization in confocal and alternative 
fluorescence microscopes. Appl. Opt. 33, 603–615 (1994).

44. Chen, Y. et al. Soma-targeted imaging of neural circuits by 
ribosome tethering. Neuron 107, 454–469 (2020).

45. Nunez-Elizalde, A. O. et al. Neural correlates of blood flow 
measured by ultrasound. Neuron 110, 1631–1640 (2022).

46. Mandracchia, B. et al. Fast and accurate sCMOS noise correction 
for fluorescence microscopy. Nat. Commun. 11, 94 (2020).

47. Huang, F. et al. Video-rate nanoscopy using sCMOS 
camera-specific single-molecule localization algorithms.  
Nat. Methods 10, 653–658 (2013).

48. Zhang, K., Zuo, W. & Zhang, L. FFDNet: toward a fast and flexible 
solution for CNN-based image denoisinga. IEEE Trans. Image 
Process. 27, 4608–4622 (2018).

49. Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online 
algorithm for piecewise rigid motion correction of calcium 
imaging data. J. Neurosci. Methods 291, 83–941 (2017).

50. Friedrich, J., Zhou, P. & Paninski, L. Fast online deconvolution of 
calcium imaging data. PLoS Comput. Biol. 13, e1005423 (2017).

Acknowledgements
We thank Y. Zhou (Tsinghua University) and Z. Zhao (Tsinghua 
University) for their help in setting up the joint two-photon and 
one-photon microscope. We thank R. Zhang (People’s Liberation 
Army General Hospital and Medical School) for helping provide virus 
injections. This work was supported by the National Natural Science 
Foundation of China (no. 62088102, 62125106, 62222508), Ministry 
of Science and Technology of the People’s Republic of China (no. 
2020AA0105500), Guoqiang Institute of Tsinghua University (no. 
2021GQG0001), China National Postdoctoral Program for Innovative 
Talents (BX2021159) and Shuimu Tsinghua Scholar Program. We 
further thank the support from Beijing Laboratory of Brain and 
Cognitive Intelligence, Beijing Municipal Education Commission 
and Beijing Key Laboratory of Multi-dimension & Multi-scale 
Computational Photography.

Author contributions
Y.Z. designed and conceptualized the DeepWonder pipeline, 
performed two-photon validation experiments and wrote the paper. 
G.Z. implemented the DeepWonder pipeline, performed simulations, 
analyzed data and wrote the paper. X.H. contributed to macroscope 
imaging and two-photon validation experiments, and analyzed data. 
J.W. and X.L. provided critical support on system setup and imaging 
procedure. Z.L. contributed to the final version of the paper. G.X. and 
H.X. performed cranial window surgeries, viral injections and RUSH 
imaging, and contributed to the paper. L.F. and Q.D. conceived and led 
the project and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/
s41592-023-01838-7.

Supplementary information The online version contains 
supplementary material available at https://doi.org/10.1038/ 
s41592-023-01838-7.

Correspondence and requests for materials should be addressed to 
Lu Fang or Qionghai Dai.

Peer review information Nature Methods thanks the anonymous 
reviewers for their contribution to the peer review of this work. Primary 
Handling Editor: Nina Vogt, in collaboration with the Nature Methods 
team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://colab.research.google.com/drive/15TvsyEYgE1iGpaNWkq3flXOw52I51mVa
https://colab.research.google.com/drive/15TvsyEYgE1iGpaNWkq3flXOw52I51mVa
https://colab.research.google.com/drive/15TvsyEYgE1iGpaNWkq3flXOw52I51mVa
https://drive.google.com/drive/folders/1OBcQUY-vsIPljSBChFfn-zqAYtYvDZ4A?usp=sharing
https://drive.google.com/drive/folders/1OBcQUY-vsIPljSBChFfn-zqAYtYvDZ4A?usp=sharing
http://atlas.brain-map.org
https://github.com/yuanlong-o/Deep_widefield_cal_inferece
https://pypi.org/project/DWonder
https://pypi.org/project/DWonder
https://doi.org/10.1038/s41592-023-01838-7
https://doi.org/10.1038/s41592-023-01838-7
https://doi.org/10.1038/s41592-023-01838-7
https://doi.org/10.1038/s41592-023-01838-7
http://www.nature.com/reprints


Nature Methods

Article https://doi.org/10.1038/s41592-023-01838-7

Extended Data Fig. 1 | Network architectures of DeepWonder. a. The basic 
structure of removing background network (RB-Net), which consists of a 3D 
encoding path (top) and a 3D decoding path (bottom). The RB-Net has 4 million 
parameters. The detailed structures of each colored box in the network diagram 
are explained in c. b. The basic structure of neuron segmentation network  
(NS-Net), which is a 3D Unet but with different channels compared to a. In 
NS-Net, a couple of lightweight convolutional operators supersede the 3×3×3 
convolution in RB-Net. A maxpooling layer at the end of NS-Net compresses 

the image sequence into a mask for segmentation. The NS-Net has 0.9 million 
parameters. The detailed structures of each colored box in the network diagram 
are explained in c. c. Detailed structures of each network part distinguished by 
different colors. Specially, we introduce “spatial to channel” operator (blue-
green)1 and “channel to spatial” operator (green) at the beginning and end of  
RB-Net (a) and NS-Net (b), respectively, for making full utilization of the 
computing potential of these two networks. All feature maps are 4D tensors and 
the order of dimensions marked in the figure is (channel, x, y, t).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | DeepWonder processing pipeline in new data. a. 
Processing pipeline of DeepWonder. The captured raw movie is firstly sent to RB-
Net to be converted into a background-free movie, and NS-Net further segments 
neurons. The segmented neurons are then formed instances, and overlapped 
neurons are further demixed through non-negative matrix factorization. Final 
temporal activities of recorded neurons are output through reading the non-
overlapped pixels of each neuron. b. Processing details of the DeepWonder 
segmentation module. Output frames from NS-Net are firstly spatiotemporally 
separated into disconnected neuron candidates, where those spatially 
overlapped but temporally distinguished candidates are separated (for example 
#1 and #2). Then neuron candidates are classified by area and roundness. 

Candidates with an area smaller than 25 µm2 will be discarded (for example #6). 
Candidates with a larger area will be kept but further divided into two groups: the 
“good” neuron group within which each neuron has roundness ≥ 0.8 (for example 
#2, #3, #4, and #5), and the “bad” neuron group is with smaller roundness (for 
example #1). The candidates in the “good” neuron list will be sent out for directly 
reading out temporal activities based on exclusive pixels (bottom dashed box in 
the second row of a). For each candidate in the “bad” neuron group, greedy ROI 
initialization is performed2 and then the candidate will be sent for local NMF to be 
further demixed (top dashed box in the second row of a). Scale bar: 100 µm and 
10 seconds.
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Extended Data Fig. 3 | RB-Net in DeepWonder largely increases signal-to-
background ratio (SBR). a. Comparison of raw widefield recordings (left, with 
the RUSH system) and DeepWonder enhanced recordings (right). The images 
shown here were calculated through time-channel-wise maximum intensity 
projection (MIP). The mean background value for widefield and DeepWonder 
was 0.61 and 0.01, respectively (normalized by the maximum value). b. Zoom-in 
panel in a. c. Zoom-in panel in b, with schematics of SBR calculation. The SBR is 
calculated by the ratio of maximum activity across the green area (that is soma 
mask) over the maximum activity across the pink area (that is background mask). 
Note each background mask does not overlap with other soma masks (Methods). 

d. SBR in logarithmic scale of all neurons in a (n = 1543 neurons from a single 
recording). Blue dots are for RB-Net, and red dots are for raw captures. e. Violin 
plot of SBR of raw image (red) and RB-Net enhanced image (blue) in logarithmic 
scale. ***P < 1×10-50, two-sided Wilcoxon signed-rank test, n = 1543 neurons from 
a single recording. White circle: Median. Thick grey vertical line: Interquartile 
range. Thin vertical lines: Upper and lower proximal values. Transparent disks: 
Data points. Transparent violin-shaped areas: Kernel density estimate of data 
distribution. f. Violin plot of SBR improvement from raw image to DeepWonder. 
n = 1543 neurons from a single recording. Violin plot elements as in e. Scale bar: 
100 µm in a and b, 10 µm in c.
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Extended Data Fig. 4 | Runtime comparisons of DeepWonder and CNMF-E. 
a. Runtime comparison of DeepWonder and CNMF-E, with increased cell 
densities from 1000 neurons/mm2 to 5000 neurons/mm2 in NAOMi1p datasets. 
Left, examples of maximum intensity projection (MIP) images of simulated 
recordings in 1000, 3000, and 5000 neurons/mm2. Right, runtime comparison 
between CNMF-E (red) and DeepWonder (blue) in an area of 600 ×600 µm2 
at fixed 1000 frames with varied neuron density. b. Runtime comparison of 
DeepWonder and CNMF-E, with increased FOV size from 0.22 mm2 to 3.54 mm2 in 
RUSH datasets. Left, examples of MIP images of RUSH recordings across FOVs of 

0.22, 1.38, and 3.54 mm2. Right, runtime comparison between CNMF-E (red) and 
DeepWonder (blue) in varied FOVs at fixed 2000 frames. c. Runtime comparison 
of DeepWonder and CNMF-E, with increased recording session length in RUSH 
datasets. Left, examples of RUSH recordings in a FOV of 600 ×600 µm2 with 1000, 
5000, and 110000 frames. Right, runtime comparison between CNMF-E (red) 
and DeepWonder (blue) at varied frames in a fixed FOV. All plots show mean ± SD 
runtime, averaged over n = 5 different recordings. a were simulated recordings.  
b and c were experimental recordings taken from 2 mice. Scale bar: 100 µm in a 
and c, 200 µm in b.
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Extended Data Fig. 5 | Simultaneous two-photon and widefield neuronal 
recording system. a. Hybrid one-photon and two-photon microscope setup. 
Ti:sapp: titanium-sapphire laser with tunable wavelength; HWP: half-wave plate; 
EOM: Electro-Optic Modulator; M: mirror; L1, L2, L3, L4, L5, L6, L7, L8: lens; D1: 
long-pass dichroic mirror to separate fluorescence signals (centered at 520 nm, 
green path) and widefield excitation signals (centered at 470 nm, blue path) 
from two-photon excitation light (centered at 920 nm, red path); D2: long-pass 
dichroic mirror to separate fluorescence signals (centered at 520 nm, green path) 

from widefield excitation signals (centered at 470 nm); BS: 50:50 (reflectance: 
transmission) non-polarizing plate beam splitter; PMT: photomultiplier tubes. 
The black dashed box in the right shows a galvo mirror which acts as an optical 
shutter and protects PMT from overexposure when widefield fluorescence is 
excited. b. Control signals and optical transmissions for two-photon microscope 
y-galvo, the galvo mirror in PMT path (as an optical shutter), the LED emission, 
EOM, and camera trigger.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Validation of DeepWonder across brain-wide 
positions. a. Distributions of temporal correlation between DeepWonder-
extracted traces and corresponding 2p ground truth traces, as a function of 
anterior-posterior (AP) positions. White circle: Median. Thick grey vertical 
line: Interquartile range. Thin vertical lines: Upper and lower proximal values. 
Transparent disks: Data points. Transparent violin-shaped areas: Kernel density 
estimate of data distribution. The bregma point (red point) is the zero point, 
where positions on the anterior side are positive and positions on the posterior 
side are negative. Data in a–g is based on a total of 40 recordings from 5 mice. 
b. Neuron detection scores (precision, sensitivity, and F-score) achieved by 
DeepWonder on experimental functional verification datasets as a function of 
AP positions. Shaded areas: mean ± SD. c. Distributions of temporal correlation 
between DeepWonder-extracted traces and corresponding 2p ground truth 
traces, as a function of medial-lateral (ML) positions. Violin plot elements as in a. 
The bregma point (red point) is the zero point, where positions on lateral sides 

are positive. d. Neuron detection scores (precision, sensitivity, and F-score) 
achieved by DeepWonder on experimental functional verification datasets as a 
function of ML positions. Shaded areas: mean ± SD. e. Distribution of temporal 
correlation between DeepWonder-extracted traces and corresponding 2p 
ground truth traces in different brain regions. Violin plot elements as in a.  
f. Spatial distribution of neuron detection accurate scores (F-score) achieved 
by DeepWonder on experimental functional verification datasets overlaid with 
Allen CCF atlas. For all covered brain regions, the accurate scores are higher 
than 0.8. g. Calcium event detection scores (precision, sensitivity, and F1 score) 
achieved by DeepWonder on experimental functional verification datasets as a 
function of anterior-posterior positions. Shaded areas: mean ± SD. To evaluate 
the detection scores, we firstly deconvolved the calcium traces of DeepWonder-
processed widefield recordings and CaImAn-processed 2p recordings using 
OASIS6, then matched the DeepWonder spikes and 2p spikes in a window of 
300 ms (Methods). h. The same as g but as a function of medial-lateral positions.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Validation of DeepWonder near complex vessel 
structures. a. Left to right in the first row: an exemplary frame from 2p 
recordings where blood vessels are outlined in red, standard deviation (STD) 
in temporal dimension of raw widefield movie (WD), DeepWonder processed 
movie, and 2p movie. Randomly selected 10 neurons are labeled by arrows and 
numbers in each panel, where green for raw movie, red for DeepWonder movie, 
and blue for 2p movie. Left to right in the second row: neuron segmentation 
by DeepWonder compared to 2p ground truth, neuronal activity traces 
corresponding to arrows in STD panels as used for performance quantifications, 
and distributions of temporal correlations between DeepWonder-extracted 
traces and corresponding traces in 2p ground truth (0.84 ± 0.11, mean ± SD, 
n = 64 neurons in a single recording). For the segmentation panel, blue circles 

indicate neurons that are found in both DeepWonder and 2p movies. Green 
circles indicate neurons that are found only in DeepWonder movie. Red dots 
are missed neurons found in 2p movie but not in DeepWonder movie. For trace 
comparison panel, red traces for DeepWonder movie and blue traces for 2p 
movie, and DeepWonder traces are offset vertically for clarity. For plots of 
temporal correlation distributions, white circle: Median; Vertical thick grey 
bar: interquartile range; Thin vertical lines: Upper and lower proximal values; 
Transparent disks: Data points; Transparent violin-shaped areas: Kernel density 
estimate of data distribution. b and c are the same with a but from different 
recordings. n = 59 neurons for b and n = 35 neurons for c. Scale bar: 50 µm and 
10 seconds.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Validation of DeepWonder on different cortical 
depths. From top to bottom: 8 different cortical depths (100 µm to 300 µm) 
were accessed by the hybrid widefield-2p detection system and processed by 
DeepWonder. The first column labels the location of the imaging focal plane 
(dashed black line) with the imaging depth labeled on the left side.  
The Roman numerals I, II indicate layer I, II of the dorsal cortex, respectively. The 
second to the fourth columns show the standard deviation (STD) image across 
temporal frames of the raw widefield movie, DeepWonder processed movie, 
and 2p movie, respectively. Randomly selected neurons are labeled by arrows 
and numbers in each panel, where green for raw movie, red for DeepWonder 

movie, and blue for 2p movie. The fifth column shows neuron segmentation by 
DeepWonder compared to 2p ground truth. Blue circles indicate neurons that 
are found in both DeepWonder and 2p movies. Green circles indicate neurons 
that are only found in DeepWonder movie. Red dots are missed neurons found 
in 2p movie but not in DeepWonder movie. The sixth column shows neuronal 
activity traces corresponding to arrows in STD panels as used for performance 
quantifications. Red traces for DeepWonder movie and blue traces for 2p movie, 
and DeepWonder traces are offset vertically for clarity. Scale bar: 50 µm and 
10 seconds.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Quantification of DeepWonder across 100-
300 µm cortical depth. a. Logarithm of signal-to-background ratio (SBR) of 
neurons in raw movie (blue) and DeepWonder movie (green) from 100 µm to 
300 µm imaging depth under dura. ***P < 1×10-50, ***P < 1×10-50, ***P < 1×10-50, 
***P = 3.86×10-24, ***P = 6.55×10-10 for depth 100, 150, 200, 250, and 300 µm, 
respectively, two-sided Wilcoxon signed-rank test. Data in a–e is based on a total 
of 40 recordings from 4 mice. Central black mark: Median. Bottom and top edges: 
25th and 75th percentiles. Whiskers extend to extreme points excluding outliers 
(1.5 times above or below the interquartile range). b. Boxplot of correlation 
scores of neurons in raw movie (blue) and DeepWonder movie (green) with 2p 
ground truth, from 100 µm to 300 µm imaging depth under dura. ***P < 1×10-50, 
***P < 1×10-50, ***P < 1×10-50, ***P = 3.98×10-11, ***P = 0.0011 for depth 100, 150, 200, 
250, and 300 µm, respectively, two-sided Wilcoxon signed-rank test. Box plot 
elements as in a. c. Distributions of temporal correlation between DeepWonder-
extracted traces and corresponding 2p traces as a function of depth. Mean ± SD of 
correlation scores are 0.83 ± 0.15, 0.80 ± 0.18, 0.77 ± 0.20, 0.68 ± 0.21, 0.67 ± 0.18 
from 100 to 300 µm imaging depth at a step of 50 µm, respectively. White 
circle: Median. Thick grey vertical line: Interquartile range. Thin vertical lines: 

Upper and lower proximal values. Transparent disks: Data points. Transparent 
violin-shaped areas: Kernel density estimate of data distribution. d. Neuron 
detection scores (precision, sensitivity, and F-score) achieved by DeepWonder on 
experimental functional verification datasets as a function of depths. Mean ± SD 
of precision scores are 0.86 ± 0.07, 0.87 ± 0.14, 0.85 ± 0.19, 0.76 ± 0.17, 0.65 ± 0.10 
from 100 to 300 µm imaging depth at a step of 50 µm. Mean ± SD of sensitivity 
scores are 0.93 ± 0.02, 0.92 ± 0.05, 0.84 ± 0.14, 0.72 ± 0.18, 0.50 ± 0.22 from 100 to 
300 µm imaging depth at a step of 50 µm. Mean ± SD of F scores are 0.89 ± 0.04, 
0.89 ± 0.09, 0.84 ± 0.15, 0.72 ± 0.15, 0.55 ± 0.17 from 100 to 300 µm imaging 
depth at a step of 50 µm. e. Calcium event detection scores (precision, sensitivity, 
and F-score; Methods) achieved by DeepWonder on experimental functional 
verification datasets as a function of depths. Mean ± SD of precision scores are 
0.85 ± 0.04, 0.84 ± 0.18, 0.80 ± 0.19, 0.74 ± 0.16, 0.65 ± 0.06 from 100 to 300 µm 
imaging depth at a step of 50 µm. Mean ± SD of sensitivity scores are 0.84 ± 0.09, 
0.85 ± 0.09, 0.71 ± 0.12, 0.58 ± 0.20, 0.43 ± 0.07 from 100 to 300 µm imaging 
depth at a step of 50 µm. Mean ± SD of F scores are 0.84 ± 0.06, 0.84 ± 0.12, 
0.74 ± 0.12, 0.63 ± 0.14, 0.52 ± 0.07 from 100 to 300 µm imaging depth at a step of 
50 µm. Shaded areas: mean ± SD.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-01838-7

Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Validation of DeepWonder on layer 2/3-specific 
animals and AAV-transduced animals without layer 2/3-specificity. a. 
Simplified schematics of imaging transgenic animals with only layer 2/3 labeled. 
b. Left to right, maximum intensity projection (MIP) image across temporal 
frames of 2p movie, DeepWonder processed movie, and raw widefield movie. 
Paired active neurons co-detected in both 2p and DeepWonder movies are 
labeled by circles in each panel, where blue for 2p movie, red for DeepWonder 
movie, and green for raw movie. c. Neuronal activity traces of randomly selected 
20 neurons in MIP panels as used for performance quantifications. Red traces 
for DeepWonder movie and blue traces for 2p movie, and DeepWonder traces 
are offset vertically for clarity. d. Temporal correlations of detected neurons 
with 2p from DeepWonder output movie (0.84 ± 0.13, mean ± SD, red) and raw 
movie (0.45 ± 0.21, mean ± SD, green), across n = 481 neurons from 8 recordings 
over 2 mice. Central black mark: Median. Bottom and top edges: 25th and 75th 
percentiles. Whiskers extend to extreme points excluding outliers (1.5 times 
above or below the interquartile range). e. Precision, sensitivity, and F1 scores 
of segmentation by DeepWonder are 0.92 ± 0.08, 0.92 ± 0.05, and 0.92 ± 0.06 

across n = 8 recordings from 2 mice, respectively. Box plot elements as in d. 
f. Simplified schematics of imaging AAV-transduced animals without layer 
2/3-specificity. g, h are the same as b, c but from AAV-transduced imaging data. 
i. Temporal correlations of detected neurons with 2p from DeepWonder output 
movie (0.83 ± 0.13, mean ± SD, red) and raw movie (0.50 ± 0.25, mean ± SD, 
green), across n = 650 neurons from 13 recordings over 3 mice. Box plot elements 
as in d. j. Precision, sensitivity, and F1 scores of segmentation by DeepWonder 
are 0.86 ± 0.10, 0.91 ± 0.12, and 0.88 ± 0.10 across n = 13 recordings from 3 mice, 
respectively. k-n. Distributions of temporal correlation, F1, precision, and 
sensitivity scores of DeepWonder-extracted traces in AAV-transduced animals 
(left) and layer 2/3-specific transgenic animals (right), respectively. Statistical 
scores are shown in mean ± SD. Data is collected from d, e, i, and j. White circle: 
Median. Thick grey vertical line: Interquartile range. Thin vertical lines: Upper 
and lower proximal values. Transparent disks: Data points. Transparent violin-
shaped areas: Kernel density estimate of data distribution. Scar bar: 50 µm and 
20 seconds.
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